DECEMBER 2017 DRAFT

Counting Complexity

Breck Yunits

Abstract—Yet another method for counting complexity.

I. INTRODUCTION

“...make the irreducible basic elements as simple
and as few as possible without having to surrender
the adequate representation of a single datum of
experience.” - On the Method of Theoretical Physics,
Albert Einstein

The above quote is commonly paraphrased as “Make things
as simple as possible, but not simpler.” This statement presents
a hard problem. How do we know when we’ve made things
as simple as possible? How do you count complexity?

One 1999 survey of complexity measures found 48 systems
in use.! Despite the abundance of proposed systems, some
of which have proved useful in isolated domains, no general
measurement system has emerged as a defacto standard.’

In this paper I add to the pile, and propose using Tree
Notation as a tool for counting complexity.

II. AN OVERVIEW

The method introduced here, named Tree Notation Com-
plexity (TNC), can be used to measure the complexity of an
entity X. It operates as follows.

First, it is assumed that all ideas are graphs that can be
sliced into tree structures.

Second, given the assumption that all structures can be
represented as trees, we can then use Tree Notation, a simple
encoding of tree structures, to encode the components of X,
in a program P, which is written in a high level symbolic Tree
Notation language defined by a grammar, GO.

Third, we can then describe that language GO in a recursive
series of grammars (G1, G2, ...).

Fourth, we can then stop at a desired level of abstraction
(to get Relative Complexity), or continue until we reach
irreducible trees (to get Total Complexity).

Fifth, we can use simple arithmetic to count the atomic
components of our program and grammars and get complexity
measurements for a system.

III. SIMPLE EXAMPLES

Which concept is more complex, a boolean digit (0 or 1)
or a base-10 digit (between 0 and 9)?

Let’s imagine a machine that takes as input one character
and returns true if that input is defined in a program written
for that machine.

Let’s encode both concepts using one Tree Notation lan-
guage (not defined here).

Breck Yunits is a researcher at Ohayo Computer (breck @ohayo.computer)

boolean

digit

=)

Nelie JREN Be NNV I S LVS I S R

Comparing the count of nodes, we get two nodes for the
”boolean” and ten nodes for the “’digit”. Hence, by this simple
TNC measure we can say that a digit is more complex than a
boolean.

Next, let’s imagine a similar string matching program that
returns true on “pat,pit,pin,bat,bit,bin,fat,fit,fin”. In this exam-
ple, we use two different machines that implement two differ-
ent languages. The programming language for MachineA can
accept only one letter per node. The language for MachineB
can accept multiple characters per node and will test its input
against each character.

programA

programB
pbf
ai
tn

Both programs are equivalent in that they both will return
the same thing for the same input. ProgramA requires fif-
teen nodes while programB requires three nodes. Hence, the
programB is less complex by this measure, given machineA

DECEMBER 2017 DRAFT

Fig. 1. A visualization of the nodes of the two programs above.

and machineB. T will explain later what I mean by “given
machineA and machineB”.

IV. AtoMic COMPONENTS OF COMPLEXITY

TNC has more atomic units to count beyond nodes. In
TNC the five countable atomic units of complexity are trees
(files/2D planes), nodes (lines in a file), words (delimited by
spaces), edges (line indentation), and word edges (words that
are pointers to other nodes). Other derived measures could be
devised as well, but in this paper we look at only the atomic
units fully necessary to describe an entity.

* * tree
[0 o] [Inode
- oo o word
- |o - child-edge
- -loo word-edge
*

Fig. 2. A visualization of the countable atomic units in TNC.

V. RELATIVE VS TOTAL COMPLEXITY

In the example above, programB was less complex than
programA “given machineA and machineB”.

However, if we were measuring Total Complexity of pro-
gramA and programB, we might find that programA is less
complex, as the complexity of the tree representation of
machineA might be less complex than the complexity of
the tree representation of machineB. Total Complexity of an

entity aggregates the complexity of the tree representation
of the entity along with the tree representations of all its
dependencies.

Another trivial example might be, given a computer that
can execute both C code and Python code, and a task to sum
some numbers from a CSV file, a program in Python would
be less complex. But the Total Complexity of the Python
program might be greater than that of the C program, when
dependencies are measured.

VI. WHY TREE NOTATION?

TNC is one of many systems that measure the “difficulty
of description”3—the entity isn’t measured directly, rather the
description of the entity is measured.

Tree Notation is used because it can easily describe micro
and macro concepts, and a user can zoom between macro and
micro scales as easily as moving within scales.

Basic primitives like the bit, the concept of a word, or an
AND gate have a Tree Notation representation.

Macro objects, like the Linux Kernel, could also be de-
scribed using just Tree Notation.

Both the description and the grammars the description uses
are represented by the same basic minimal structures allowing
the whole system to be counted and analyzed.

Tree Notation is minimal and unambiguous. Descriptions
written in Tree Notation can expand gracefully to handle new
ideas. Other descriptions become noisier or repetitive over
time, whereas Tree Notation is a noiseless encoding and the
signal in the information remains strong over time.

Tree Notation is a universal notation that can describe items
in any domain, from computer science and mathematics to
medicine and the law. TNC thus could enable cross-domain
complexity comparisons.

In a sense, Tree Notation can be thought of as a notation for
building a strongly-typed noiseless encyclopedia, and then the
complexity of items in that encylopedia can then be measured
and compared.

Furthermore, items encoded in Tree Notation can be thought
of and visualized as existing in 3-Dimensions. This is far-off
speculation, but perhaps there exists a correlation between the
TNC measurements of a topic, and the number of neurons
and synapses dedicated to that topic in the brain of a topic
expert, out of the total supply of their 10 x 10'! neurons and
10 x 105 synapses.

VII. BiG COMPLEXITY

How complex is the U.S. tax code? How complex is the
Linux Kernel? How complex is a comprehensive description
of the human brain? How complex is a comprehensive blue
print of the new iPhone?

At the moment no total complexity descriptive project so
ambitious has been attempted in Tree Notation. It is an open
question as to whether or not such an accomplishment is even
possible. For example, a back of the envelope estimate of how
many nodes might be in the total Tree Notation description of
the Linux Kernel might be a 10 x 10° or perhaps as many as
10 x 102,

DECEMBER 2017 DRAFT

One thing is certain: assuming Tree Notation does provide
the simplest notation to describe entities and thus measure
their complexity (a big assumption), that does not change the
fact that the total complexity of entities in our modern world
is large and ever increasing.

VIII. GROWTH OF COMPLEXITY

The Total Complexity of the world increases monotonically
over time in terms of raw atomic units like tree, node and edge
counts. However, new higher level trees are also constantly
introduced, reducing Relative complexity in many areas at
the same time that absolute complexity generally increases.
Relative Complexity measurements of concepts ebbs and flows
in sinusoidal waves, while the underlying absolute complexity
steady increases.

IX. CONCLUSION AND FUTURE WORK

To an evergrowing number of systems for measuring I
add one more: Tree Notation Complexity. The benefit of this
system is that it is simple, practical, universal, and scale
free. Future projects might look at creating Tree Notation
descriptions of large, complex systems and visualizing and
summarizing the results.

REFERENCES

' Edmonds, B. (1999). Syntactic Measures of Complexity. Doctoral Thesis,
University of Manchester, Manchester, UK.

2 Mitchell, M., 2009. Complexity: A guided tour. Oxford University Press.

3 Lloyd, Seth. ”Measures of complexity: a nonexhaustive list”” IEEE Control
Systems Magazine 21.4 (2001): 7-8.

